Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(1)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36672930

RESUMEN

In this study, marker-assisted recurrent selection was evaluated for pyramiding resistance gene alleles against coffee leaf rust (CLR) and coffee berry diseases (CBD) in Coffea arabica. A total of 144 genotypes corresponding to 12 hybrid populations from crosses between eight parent plants with desired morphological and agronomic traits were evaluated. Molecular data were used for cross-certification, diversity study and resistance allele marker-assisted selection (MAS) against the causal agent of coffee leaf rust (Hemileia vastatrix) and coffee berry disease (Colletotrichum kahawae). In addition, nine morphological and agronomic traits were evaluated to determine the components of variance, select superior hybrids, and estimate genetic gain. From the genotypes evaluated, 134 were confirmed as hybrids. The genetic diversity between and within populations was 75.5% and 24.5%, respectively, and the cluster analysis revealed three primary groups. Pyramiding of CLR and CBD resistance genes was conducted in 11 genotypes using MAS. A selection intensity of 30% resulted in a gain of over 50% compared to the original population. Selected hybrids with increased gain also showed greater genetic divergence in addition to the pyramided resistance alleles. The strategies used were, therefore, efficient to select superior coffee hybrids for recurrent selection programs and could be used as a source of resistance in various crosses.


Asunto(s)
Coffea , Resistencia a la Enfermedad , Resistencia a la Enfermedad/genética , Coffea/genética , Alelos , Enfermedades de las Plantas/genética
2.
Bioengineered ; 13(6): 14646-14666, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35891620

RESUMEN

Genome-editing tools for the development of traits to tolerate abiotic and biotic adversaries are the recently devised breeding techniques revolutionizing molecular breeding by addressing the issues of rapidness and precision. To that end, disease resistance development by disrupting disease susceptibility genes (S genes) to intervene in the biological mechanism of pathogenicity has significantly improved the techniques of molecular breeding. Despite the achievements in genome-editing aimed at the intervention of the function of susceptibility determinants or gene regulatory elements, off-target effects associated with yield-related traits are still the main setbacks. The challenges are attributed to the complexity of the inheritance of traits controlled by pleiotropic genes. Therefore, a more rigorous genome-editing tool with ultra-precision and efficiency for the development of broad-spectrum and durable disease resistance applied to staple crop plants is of critical importance in molecular breeding programs. The main objective of this article is to review the most impressive progresses achieved in resistance breeding against the main diseases of three Solanaceae crops (potato, Solanum tuberosum; tomato, Solanum lycopersicum and pepper, Capsicum annuum) using genome-editing by disrupting the sequences of S genes, their promoters, or pathogen genes. In this paper, we discussed the complexity and applicability of genome-editing tools, summarized the main disease of Solanaceae crops, and compiled the recent reports on disease resistance developed by S-gene silencing and their off-target effects. Moreover, GO count and gene annotation were made for pooled S-genes from biological databases. Achievements and prospects of S-gene-based next-generation breeding technologies are also discussed.


Most S genes are membrane ­anchored and are involved in infection and pre-penetration processS gene-editing is less likely to cause an off-target effectGene-editing has been considered a more acceptable engineering toolEditing S genes either from the pathogen or host ends has opened new possibilities.


Asunto(s)
Resistencia a la Enfermedad , Solanaceae , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Resistencia a la Enfermedad/genética , Edición Génica/métodos , Genoma de Planta/genética , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética , Solanaceae/genética , Verduras
3.
Genes (Basel) ; 11(10)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977701

RESUMEN

Diabetes mellitus, a group of metabolic disorders characterized by hyperglycemia, is one of the most serious and common diseases around the world and is associated with major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. A widely used treatment for non-insulin-dependent diabetes is α-glucosidase inhibitors (AGIs) such as acarbose, which hinders hydrolytic cleavage of disaccharides and retard glucose absorption. The ability to inhibit α-glucosidase activity has been reported in leaf and fruit of pepper (Capsicum annuum L.). In this study, we aimed to identify quantitative trait loci (QTLs) controlling α-glucosidase inhibitory activity (AGI activity) in pepper leaf and fruit using enzyme assay and genotyping-by-sequencing (GBS) analysis. The AGI activity at three stages of leaf and one stage of fruit development was analyzed by 96 F2 individuals. GBS analysis identified 17,427 SNPs that were subjected to pepper genetic linkage map construction. The map, consisting of 763 SNPs, contained 12 linkage groups with a total genetic distance of 2379 cM. QTL analysis revealed seven QTLs (qAGI1.1, qAGI11.1, qAGI5.1, qAGI9.1, qAGI12.1, qAGI5.2, and qAGI12.2) controlling AGI activity in pepper leaf and fruit. The QTLs for AGI activity varied by plant age and organ. This QTL information is expected to provide a significant contribution to developing pepper varieties with high AGI activity.


Asunto(s)
Acarbosa/farmacología , Capsicum/genética , Frutas/genética , Hojas de la Planta/genética , Proteínas de Plantas/antagonistas & inhibidores , Sitios de Carácter Cuantitativo , alfa-Glucosidasas/química , Capsicum/efectos de los fármacos , Capsicum/enzimología , Capsicum/crecimiento & desarrollo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Frutas/efectos de los fármacos , Frutas/enzimología , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Ligamiento Genético , Genotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
4.
PLoS One ; 15(7): e0222747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32639982

RESUMEN

Physiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.


Asunto(s)
Café/genética , Resistencia a la Enfermedad/genética , Genoma de Planta , Secuencia de Aminoácidos , Basidiomycota/fisiología , Sitios de Unión , Café/clasificación , Biblioteca de Genes , Solanum lycopersicum/clasificación , Solanum lycopersicum/genética , Sistemas de Lectura Abierta/genética , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo Genético , Alineación de Secuencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Vitis/clasificación , Vitis/genética
5.
Braz J Microbiol ; 51(1): 417, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31784948

RESUMEN

The original version of this article unfortunately contained two mistakes in the "Materials and methods" section, subsection "DNA extraction and PCR" of the article. The correct information is given below.

6.
Braz J Microbiol ; 50(3): 739-748, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31073985

RESUMEN

Elucidation of the distinctive microbial taxonomic profiles of tropical fruit peels is the indispensable component of investigations aimed at the detection of microorganisms responsible for the post-harvest loss. The objective of the present work was to dissect the bacterial and fungal community of five tropical fruit peels (banana, guava, mango, papaya, and passion fruit) in wild (non-cultivated) and conventionally produced samples from Brazil. To that end, 16S rRNA-encoding gene and ITS rDNA amplicon analysis of the five tropical fruit peels were performed to discriminate the bacterial and fungal communities, respectively. The result showed that bacterial communities of the five types of fruit peels were by far more diversified than that of fungal communities, independent of the type of production system involved. Among the investigated fruits, non-cultivated papaya peels hosted the most diversified bacterial community while the least bacterial community diversity was found in the conventionally produced papaya fruit peels. The gene amplicon analysis clearly discriminated the bacterial community into their respective classes, while fungal communities were better classified in their phyla, yet with clearer component discrimination of fungal community based on the type of cultivation system practiced. Conventionally produced banana and non-cultivated passion fruit peels were characteristically dominated by fungal and bacterial groups, respectively. Overall, in conventionally produced fruit peels, bacterial community was mainly composed of Proteobacteria, Actinobacteria, and Bacilli. The result provided a broad microbial diversity profile that could be used as an important input for seeking alternative fruit spoilage control and post-harvest treatments.


Asunto(s)
Bacterias/aislamiento & purificación , Frutas/microbiología , Hongos/aislamiento & purificación , Microbiota , Bacterias/clasificación , Bacterias/genética , Brasil , Carica/microbiología , Hongos/clasificación , Hongos/genética , Mangifera/microbiología , Musa/microbiología , Passiflora/microbiología , Psidium/microbiología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...